
Compressed air conditioning

Three-stage filtration P-M-A

Description

- · Borosilicate filter with a high capacity
- Filter rating 0.01 µm
- Efficiency 99.9999%
- Ideal for filtering out aerosols and solid impurities larger than 0.01 µm
- Micro-filter for connection upstream of an activated carbon filter. Installation of an upstream prefilter is recommended!
- Optionally with a differential pressure gauge
- Automatic drain as standard

Applications

- All applications where standard centrifugal filters with a sintered element do not afford the desired efficiency. ausreichend ist.
- Part of a modular system that also includes a pre-filter and an activated carbon filter, this device belongs to a homogeneous product family that is suitable for a wide variety of applications, such as paint spraying plants, sandblasting systems, controllers, vacuum systems, measuring instruments, fluidics, feed air, process air, air bearings and air conditioning systems.
- The differential pressure gauge indicates the pressure drop Δp inside the filter.

Operating principle

- Flow direction (inside the element) from the inside to the outside.
- The air, which should preferably be pre-filtered (using a pre-filter), is cleaned in several stages. It flows through the filter element from the inside to the outside. Coarse impurities are removed by a pre-filtration mesh. This stage is followed by fine filtration in multi-layered, borosilicate glass-fibre material. The large cavity (85%) between the glass fibres ensures good absorptivity of solid matter.
 - The foam plastic sheaths are resistant to acidic and synthetic oils as standard.
- The (optional) differential pressure gauge indicates the degree of contamination of the element as a function of the pressure drop.

Cleaning / element replacement

The filter cannot be cleaned!

The element should be replaced at the latest when the pressure drop is 0.6 bar, i.e. when the pressure gauge scale shows a value in the red sector.

Data subject to change

Materials

Part	Material
Head piece	Al
Filter bowl	Al
Filter element	Borosilicate - glass-fibre material
	foam plastic - stainless steel
O-rings	NBR

Important

 \rightarrow When the pressure system is started up again (e.g. after the element has been replaced), the pressure should be built up gradually to prevent irreparable damage to the filter element

Compressed air conditioning Three-stage filtration P-M-A

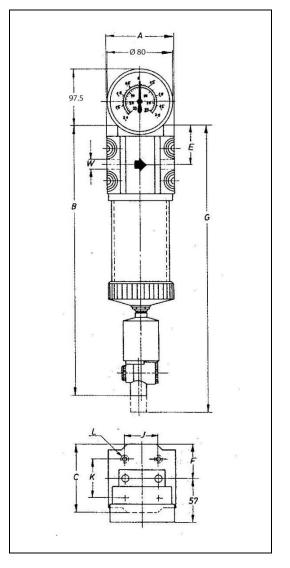
Characteristics

Order No.			Accessories							
(1)	Port	Size	Filter	Con-	Mounting	Differential				
	(thread)		element	nectors	kit	pressure				
	G					gauge				
430.2102	1/4									
430.2104	3/8	1	430/2	429/29	429/25					
430.2106	1/2									
430.2208	3/4	2	430/6			5429.10				
430.2309	1	3	430/8							
430.2410	11⁄4	4	430/9	429/33	429/27					
430.2511	1½	5	430/11							
430.2612	2	6	430/12							

General						
Operating pressure: Max.	12 bar					
- With automatic drain						
Min.	4 bar					
- With manual drain						
valve						
Min.	0 bar					
Operating temperature:	5°C to 60°C					
Port: ISO 228	G 1/4 to G 2 standard; G 2½ and G 3 on request					
Indicating range of						
diff. pressure gauge	0 to 2 bar (0 to 29 lb/in²)					
Mounting position	Vertical					
Flow direction	Indicated by arrow					

(1) The first digit after the point is $\bf 5$ instead of 2 for micro-filters without a differential pressure gauge.

Order example:


Micro-filter G 1/4 without differential pressure gauge: 430.5102

Dimensions [mm]

Size	Port	Dimensions					Space needed Mounting for element replacement			Weight incl. pr.gauge	
	W	Α	В	С	Е	F	G	J	K	L	[g]
1	G 1/4 / 3/8 / 1/2	83	335	83	57	41.5	410	40	48	M 6	2100
2	G 3/4		405				550				2100
3	G 1		420				530				4700
4	G 1¼	118	520	118	72	59	730	70	80	M 8	5000
5	G 1½		620				830				5500
6	G 2		810				1310				6140

Flow rates

		Size	Pressure [bar]							
			2	4	6	8	10	12	14	16
Flow rate at pressure drop $\Delta p = 1.5\%$	m³/h	1	13	21	78	39	47	56	64	73
		2	26	43	120	77	94	111	129	145
		3	39	64	245	116	141	167	193	219
		4	69	114	275	206	251	297	343	389
		5	107	179	390	321	393	464	536	607
		6	171	286	540	514	629	743	857	971

